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Abstract

This paper proposes a formal cognitive framework for
problem solving based on category theory. We intro-
duce cognitive categories, which are categories with
exactly one morphism between any two objects. Ob-
jects in these categories are interpreted as states and
morphisms as transformations between states. More-
over, cognitive problems are reduced to the specifica-
tion of two objects in a cognitive category: an outset
(i.e. the current state of the system) and a goal (i.e.
the desired state). Cognitive systems transform the
target system by means of generators and evaluators.
Generators realize cognitive operations over a system
by grouping morphisms, whilst evaluators group ob-
jects as a way to generalize outsets and goals to par-
tially defined states. Meta-cognition emerges when
the whole cognitive system is self-referenced as sub-
states in the cognitive category, whilst learning must
always be considered as a meta-cognitive process to
maintain consistency. Several examples grounded in
basic AI methods are provided as well.

1 Introduction

Unification of Artificial Intelligence (AI) has been a
long pursued goal since the early days of computa-
tion, however it remains elusive. Here we propose a
novel framework that lays the grounds of a formal de-
scription of general intelligence. This framework is a
generalization and formalization of the concepts pre-
sented in [1], which claimed that cognitive systems
learn and solve problems by trial and error: the at-
tempts at reaching a goal, termed variants, are first
generated by some heuristics and then assessed. The

better the models a cognitive system has, the more
accurate the generation of variants is and the fewer
the mistakes made. Random variants are inevitable
when there are no models, and mistake-free variants
are are used when the model is complete.

Many theories have been proposed that attempt
general problem solving, yet the final goal of achiev-
ing human-level intelligence has been unsuccess-
ful. Some authors have proposed guidelines and
roadmaps for this search [17, 12]. One of the ear-
liest theories that focus on general problem solving
was proposed in [14] and focuses in decomposing re-
cursively goals in subgoals and separating problem
content from problem solving strategies. It evolved
later into the cognitive architecture SOAR [10, 11] as
an example of a unified theory of cognition [15]. Fur-
thermore, [8, 9] proposed a general theory of universal
intelligence that combines Solomonoff induction with
sequential decision theory realized in a reinforcement
learning agent called AIXI. However, AIXI is incom-
putable [22] and relies on approximations. A formal
measure of general intelligence was proposed in [13]
and related it to AIXI.

On the other hand, category theory has been sel-
dom applied to modeling general cognitive processes.
Rather, these efforts have been directed towards
knowledge representation and specific cognitive pro-
cesses. [4] proposed a general framework for repre-
sentation based on category theory to advance in the
understanding of brain function. Other authors have
focused in modeling the semantics of cognitive neu-
ral systems [6], describing certain aspects of cogni-
tion such as systematicity [5, 16], or modeling the-
ories about human consciousness such as Integrated
Information Theory [20, 19].
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2 Category Theory

Category theory is a relatively new field of mathe-
matics and the theory of structure par excelence. It
raises the importance of relations between objects to
that of the objects themselves. We now sketch the
categorical entities that stand as the formal skeleton
of the cognitive theory developed in this paper.

Definition: A category C consists of two entities:

1. A class Obj(C) of elements. These elements are
called objects. An object A ∈ Obj(C) is also
written A ∈ C.

2. Morphisms (Also maps or arrows): For each
A,B ∈ C, a hom-set homC(A,B) whose elements
f ∈ homC(A,B) are called the morphisms from
A to B. A is called the domain of f and B the
codomain. f is also written f : A −→ B or fAB.
The class of all morphisms in C is denoted as
Mor(C).

With the following properties:

1. For each object A ∈ C, there is a morphism
1A ∈ homC(A,A) called the identity morphism
with the property that, for any morphism f ∈
homC(A,B), then 1B ◦ f = f ◦ 1A = f .

2. Composition: If f ∈ homC(A,C) and g ∈
homC(C,B), then there is a morphism g ◦ f ∈
homC(A,B). g ◦ f is called the composition of g
with f .

3. Composition is associative: f ◦(g◦h) = (f ◦g)◦h.

@

There is no restriction on what elements can C
hold. In this article we will use small categories,
i.e. Obj(C) and Mor(C) are sets. The elements of
C may be abstract mathematical entities, daily ob-
jects or even other categories. In the latter case, the
morphisms between categories receive a special treat-
ment and are called functors:

Definition: A (covariant) functor F : C −→ D is
a morphism between categories C,D with the follow-
ing two components:

1. A function F : Obj(C) −→ Obj(D) that maps
objects in C to objects in D.

2. A function F : Mor(C) −→ Mor(D) that maps
morphisms in C to morphisms in D.

With the following properties:

1. If A,B ∈ C, F maps a morphism f : A −→ B to
Ff : FA −→ FB.

2. Identity is preserved: F1A = 1FA.

3. Composition is preserved: F (g ◦ f) = Fg ◦ Ff .

@

Other important concepts in category theory are
natural transformations, limits and adjunctions,
which are not needed to introduce the concepts pre-
sented here.

3 Core

Let us specify an independent system as an entity
that has no relationship whatsoever with other sys-
tems. This definition grants self-containment to sys-
tems that will undergo cognitive processing. Inde-
pendent systems are abstract, but will serve as an ide-
alization that will ease the study of non-independent
systems. Moreover, we assume that they abide at ex-
actly one state in any given context. We will also re-
fer to cognitive systems. Cognitive systems will only
intervene on an independent system when the latter
fails to fulfill the desired goal. The other assumption
is that the purpose of cognitive systems is to solve
problems specified as states that fulfill some condi-
tion. We now present the key concepts along with
some examples grounded on AI.

3.1 Cognitive categories

Cognitive categories are the cornerstone of this
framework. The generality of category theory enables
to apply this framework in a wide variety of applica-
tions. We will first give the definition of cognitive
category and then study the properties.

Definition: A cognitive category S is a category
that satisfies |homS(A,B)| = 1 for all A,B ∈ S. @

All objects in cognitive categories are initial and
terminal objects. Also, all morphisms are invertible
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Figure 1: A cognitive category consisting of 4 states.
The number of morphisms is 42 = 16.

and there are exactly |Obj(S)|2 morphisms. Let us
create an intuition for cognitive categories. The ob-
jects Obj(S) of a cognitive category S associated to
an independent system, which we will also denote as
S, correspond to each of the possible unique states
that the system can be found at. On the other hand,
homS(A,B) with A,B ∈ S represents a transforma-
tion from state A to state B. Other than that, we
leave the specific mechanics of transformations un-
defined. We will justify that this transformation is
unique as follows: It is always possible to conceive a
transformation between any two states by replacing
the system in state A with another undistinguishable
system in state B. For practical purposes, trans-
formation and replacement are equally effective be-
cause the relationships between states of the system
remain equal. Therefore |homS(A,B)| ≥ 1. Now,
consider any t1, t2 ∈ homS(A,B). Since A and B are
states, the effects on the system of any transforma-
tion t1 ∈ homS(A,B) will be undistinguishable from
any other transformation t2 ∈ homS(A,B), hence
t1 = t2 and so, |homS(A,B)| = 1. Thus, the cate-
gory of states of an independent system is a cognitive
category. With this intuition in mind, identity mor-
phisms are null transformations and composition of
t1 : A −→ B and t2 : B −→ C is a direct transforma-
tion t21 : A −→ C. Morphisms in cognitive categories
allow for the consideration of atomic transformations
between single states, but they are less useful when
considering real world problems because transforma-
tions are generally defined as operations rather than
a replacement of one specific state into another.

3.2 Cognitive problems

The next step is to characterize the functionality of a
cognitive system. We assumed that an independent

system S may only be found in one of its possible
states at any one time. Consider that this state is
O ∈ S and consider another state T ∈ S that holds
some desired condition. We will refer to O as the
outset and T as the goal. The cognitive system re-
ceives these states as fixed: O is given by the current
state of the independent system and T is given exter-
nally. The role of the cognitive system is to find some
method or operation that transforms the independent
system to a goal-complying state, and optionally ex-
ecuting this operation. Once the cognitive system
transforms the outset state into the goal state, it be-
comes superfluous until another cognitive problem is
presented.

We can define for now a restricted definition of cog-
nitive problem that is valid when there is no uncer-
tainty, which is covered in Section 3.4 where O and
T will be generalized to partially known outsets and
abstract goals by considering sets of outsets and sets
of goals.

Definition: A deterministic cognitive problem B
is a triple (S, O, T ), where S is a cognitive category,
O ∈ S is the outset and T ∈ S the goal. @

The solution to cognitive problems involves two
stages, as mentioned above:

First, find a morphism t that guarantees that,
if followed, the solution will be reached. Since
|homS(O, T )| = 1, t is the singleton morphism
in homS(O, T ) and is fully defined by t ≈ B =
(S, O, T ). However, the cognitive system will not
be able to provide t reliably unless stored as prior
knowledge, which makes the base of model-based cog-
nitions, as we will see in section 3.3.

O T?

Second, follow t to actually transform S from O
to T . Let us analyze further this stage. Assume
that S is in state O and that there is a morphism
t : O 7−→ X , with X unknown, that is, the cognitive
system knows the outset O and knows that there is
a morphism t whose domain is O, but has no knowl-
edge about what state X will be reached if morphism
t is followed. The only way of finding X is by fol-
lowing t. However, there is an important drawback
that originates from transforming S: The cognitive
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system might not have the ability to return S to O
after having followed t, that is, it might be uncapable
of solving (S, T, O). Graphically,

O ?t

The rest of the paper builds on how to find t under
various conditions and shows through examples how
this formulation is sufficient to describe a variety of
AI methods.

Example: A Turing machine [21] is a formal
model of computation that manipulates symbols
in an infinite string on a tape following a table
of rules. Mathematically, it is a 7-Tuple M =
〈Q,Γ, b, Σ, δ, q0, F 〉 [7] where the symbols denote, re-
spectively, Q : states (not to confuse them with states
in independent systems), Γ : tape alphabet symbols,
b : blank symbol, Σ : input symbols, δ : transi-
tion function, qo : initial state and F : Accepting
states. However, the control element of Turing ma-
chines alone lack some characteristics of independent
systems, specifically that strings are not considered
part of the state of the Turing machine. Actually,
the only discernible change between the initial and
halting conditions is that the internal state changes
from q0 to qG ∈ F . Hence the states of the inde-
pendent system do not need to describe the Turing
machine. Moreover, we will assume that it always
halts and only consider the initial and halting con-
tents of the tape. So, we define the cognitive cate-
gory of Turing machine strings STM whose objects
are the set of all possible strings in the tape. The
morphisms replace one string with another, but hold
no information about what processes lie behind this
transformation. That is the job of the generators: A
Turing machine is a component of a cognitive system,
specifically a generator, that operates on the tape and
transforms one string into another following the in-
structions set by its transition function δ. As purely
computational machines, Turing machines solve the
second stage of cognitive problems as stated above.@

One more comment: there is no single way of de-
signing a cognitive category. It depends on how a
cognitive problem is best described. For instance, we
could have described instead the cognitive states of a
Turing machine in the previous example as the string

  

  

Figure 2: An omnipotent set of 4 generators over a
cognitive category with 4 states. Dashed: Do not
transform. Dotted: Cycle through all states.

after executing each instruction. By way of compo-
sition of morphims between the initial tape and the
halting tape, this category can be reduced to the pre-
vious.

3.3 Generators

Morphisms in cognitive categories are well suited to
study the atomic transformations of independent sys-
tems, but they are most useful for theoretical analy-
ses. Generally, it is not possible to transform freely a
system. Rather we are constrained by a limited set of
operations. In practice, a cognitive system will per-
form operations on an independent system regardless
of its outset, with the resulting state depending on
the operation and the outset. Generators are cog-
nitive solvers that produces transformations for any
state of S in the scope of cognitive categories and
stand as the first abstraction of cognitive processes.

Definition: A generator gt : Obj(S) −→ Obj(S)
over a cognitive category S is an endomorphism in
the category of sets. @

gt stands for generate and transform. Generators
generalize transformations defined by a morphism to
the whole set of possible states. Intuitively speaking,
a generator is the application of an operation over S
from an unspecific outset. More specifically, it pro-
vides the morphism that is equivalent to running the
operation conveyed by the generator, and then fol-
lows the morphism. Generators cover the first stage
of problem solving as stated in section 3.2. An iso-
morphic function is g : Obj(S) 7−→ homS(O, T ) such
that g is equivalent to gt except that it does not fol-
low the morphism. If a state X ∈ S, the relation
between g and gt is gt(X) = codom(g(X)) We will
use g or gt depending on which one fits best, knowing
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that they are isomorphic.

O T = gt(O)
tO=g(O)

The elements of g are morphisms in S that have
the same properties as set functions (because they
are set functions). Specifically:

• g provides one morphism for each state in S.

• g is either an automorphism or both a non-
injective and non-surjective morphism in the cat-
egory of sets: there are generators that cannot
transform S to every state.

Example: Consider the cognitive category SM of
mathematical statements and a cognitive problem
B = (SM , O ≈ (x − 1)2 = 0, G ≈ x = 1). The solu-
tion involves finding a function θM : (S, O,G) −→ g
with g : (x−1)2 = 0 7−→ x = 1. θ is well known for B
(for example, [2]) and computationally implemented
with Computer Algebra Systems. θM recognizes O
as a polynomial, providing and calling a one-variable
polynomial solver for the generator g. Alternatively,
a student θH provides g by writing a sequence of steps
required to solve for x. @

Consider the set GS of all possible generators in S.
With respect to its cardinality, if n = |S| then for
every object A ∈ S there are n possible morphisms,
hence |GS | = n2. In general, cognitive systems will
not have access to GS , but rather to a subset of GS

that constitute the set of operations over S available
to the cognitive system. Let us study a special case
of G ∈ GS that greatly simplifies the study of gener-
ators.

Definition: An omnipotent set of generators over
S is a set of generators G ⊂ GS that can generate any
morphism in S. @

Example: Consider an independent system with
n possible states associated to the cognitive category
S = {S1, . . . , Sn}. Consider as well a cognitive sys-
tem with a unique generator g over S that cycles over
all states:

g(Si) =

{

Si+1 if i ∈ {1 . . . n− 1}

S1 if i = n

An omnipotent set of generators is constructed by
composing g with itself iteratively: G = {gi = g ◦
i
· · · ◦ g|i ∈ {1 . . . n}} @

Given any outset O, a cognition with an omnipo-
tent set of generators can transform it to any other
state and thus take complete control of S.

Theorem: Consider an omnipotent cognition over
a cognitive category S with a set of available genera-
tors G ⊂ GS . Then, |G| ≥ |S| = n.

Proof: The number of morphisms that each gen-
erator can produce is equal to n = |S|. Taking the
definition of cognitive category, the number of mor-
phisms in S is n2. Therefore, covering the full set
of morphisms in S requires a minimum of n2/n = n
generators. @

We will refer to G as a reduced set of generators
when |G| = n. These generators have interesting
properties:

1. For each t ∈ Mor(S) such that t : A −→ B
there exists a unique generator g ∈ G such that
g : A 7−→ B.

2. For each A ∈ S, and for each g1, g2 ∈ G, if
g1(A) = g2(A) then g1 = g2.

The second property states that given an outset O,
there exists one generator for transforming to each
state T . However, the opposite is not true: The num-
ber of generators that transform each O to a fixed T
range from 0 to n. Generators are more interesting
when they transform any outset to a small number
of states, which leads to the next definition:

Definition: A purposeful generator gT is the con-
travariant hom functor hom(·, T ) : S 7−→ set defined
by gT (O) = hom(·, T )(O) = hom(O, T ) = {tOT }. @

We leave the analysis of the morphism component
of this functor for future works. The generate and
transform variety of g may also be used for an equiv-
alent but simpler definition:

Definition: A purposeful generator gtT is the
constant function gtT (O) = T where O ∈ S. @

The latter definition clearly shows that purposeful
generators are strongly related to states in the cog-
nitive system. This is consistent with the fact that
the minimum number of generators required in an
omnipotent cognition matches the number of states
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Figure 3: The canonical set of generators over a cog-
nitive category with 4 states. Morphisms with the
same line style correspond to elements of the same
generator.

in S. Actually, it is possible to build an omnipotent
cognition with purposeful generators exclusively from
an omnipotent cognition with non-purposeful genera-
tors: Consider a cognition with an initial omnipotent
set of non-purposeful generators G. Then, for ev-
ery outset O and every goal T , there is a generator
gi ∈ G such that gi(O) = tOT . Now, consider a gen-
erator gT that uses the appropriate non-purposeful
generator for each possible outset, such that

gT (X) =















gi(X) = tO1T if X = O1

...

gj(X) = tOnT if X = On

gT is indeed a purposeful generator because
gtT (X) = T for all X ∈ S. We can repeat this argu-
ment for each state in S and therefore build a set of
n distinct purposeful generators:

Definition: The canonical set of generators for
the cognitive system S is the set GS = {gX =
hom(·, X)|X ∈ S}. @

GS is a reduced set of generators because |GS | =
|Obj(S)| = n. Moreover, GS is unique: Consider a
reduced set of purposeful generators G′

S that is built
using a different set of generators than GS . We have
that for all X,Y ∈ S, there is a gT ∈ GS such that
gT (X) = tXY and a g′T ∈ G′

S such that g′T (X) =
tXY . Taking into account that both sets have the
same number of generators, we conclude that GS and
G′

S are the same set.

Morphisms in cognitive categories represent intu-
itively transformations of states, however these trans-
formations are too specific to be useful in real prob-
lems. Normally a cognitive system will have a set

of operations to work with an independent system.
The above developments show how we can build op-
erations that are specialized in pursuing a single goal
from a set of operations with unspecific results. More
importantly, we can assign one of these operations to
each state such that instead of specifying a goal as
a state in S, we can specify a goal as an operation
defined by a purposeful generator and extend this re-
sult to the resolution of cognitive problems. Thus,
any omnipotent cognition over S straightforwardly
solves any arbitrary cognitive problem B = (S, O, T )
by calling the generator gT ∈ GS . Hence, at first
sight B could alternatively be specified by the triple
(S, O, gT ).

Example: Following the example above, the con-
trol element of a Turing Machine M is a generator
over the infinite string of symbols: For each state
Oi ∈ STM , M produces another string gTM (Oi) = Ti.
Turing machines that overwrite the contents of the
tape with a constant string are pseudo-purposeful
generators: gTM (Oi) = T for all Oi ∈ STM , as long
as Oi and T have a finite number of distinct elements.
Therefore, it is not possible to construct an omnipo-
tent cognition with Turing machines unless Q is infi-
nite, but by definition Q is finite. @

We have introduced the first steps towards formally
grounding abstract cognitive processing by showing
how elementary transformations between states are
related to operations performed by cognitive systems
on independent systems. Generators generalize oper-
ations in the context of category theory and provide a
more natural way of approaching transformations of
independent systems than morphisms, which are lim-
ited to one specific outset and goal each. On the con-
trary, the domain of generators include every state in
a cognitive category. Moreover, we have seen a class
of generators related to a single state each that take
the target system S to that state regardless of the
outset and allows to work with operations instead of
states in cognitive problems.

3.4 Evaluators

Until now we have assumed that the states of S are
fully known. In general, this is not the case, however
desirable. Evaluators cover those situations where
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SA1 SA2 VA

SB1 SB2 VB

g(SA1)

g(SA2) ESA1=ESA2
gV(VA)

gV(VA)

g(SB1)

g(SB2)

ESB1=ESB2
gV(VB)

Figure 4: Objects SA1, SA2, SB1 and SB2 belong to
the cognitive category S, and VA, VB ∈ V . Only the
morphisms generated by g and its counterpart gV are
shown. Evaluator E : S −→ V sends objects SA1

and SA2 to VA, and SB1 and SB2 to VB . Generator
g cannot be transferred to V because its gV is not a
function.

information about the state is needed, yet there is
partial or no access to this state. In a sense, evalua-
tors query the independent system and return some
evaluation on the state, without actually referencing
any particular state. The power of evaluators stem
from the fact that they can group many states with a
common property into a single object of another cat-
egory, resulting in an abstraction of unknown states
into a cognitive category with known states.

Consider a cognitive category V whose objects rep-
resent abstract properties. The objects in V group
states according to some pattern, characteristic or
common property. Also, consider a functor E : S =⇒
V that sends each state in S to an object in V . E
establishes the relation between states in S and ab-
stract objects in V .

Definition: An evaluator is a functor E : S =⇒
V , with S, V being cognitive categories. @

V is a partition of S, therefore the number of evalu-
ators is precisely the Bell number Bn [18] with index
n = |Obj(S)| :

Bn =
1

e

∞
∑

k=0

kn

k!

Example: Neural networks for classification [24]
take input vectors and output an element in a finite
set. It is possible to construct an evaluator from these
neural networks. If S is a cognitive category whose
states si are described with vectors and V is another
cognitive category whose objects V ∈ V are the out-

put elements of a neural network N : si −→ Obj(V),
then an evaluator E : S −→ V is constructed in the
following way: taking s ∈ S, the object component
of E is the neural network: E(s) = N(s) and the
morphism component is trivial: E(trs) = tE(r)E(s).@

Example: Consider a cognitive problem where the
desired goal is a positive assessment from all binary
evaluators E1 ∩ . . . ∩ En, i.e. with two outcomes
pass and fail. In this case, the appropriate evaluator
to use as goal for the cognitive problem is E(S) =
E1(S)ˆ . . . ˆEn(S). @

3.4.1 Generators in evaluators.

Evaluators are only useful if we can apply transfor-
mations to their outcomes. Let us transfer the gen-
erators over S to generators over V . V is an abstract
category, so it does not make sense to talk about op-
erations in V unless they are grounded somehow. For
that reason, the operations conveyed by generators g′i
over V are the same operations as generators gi over
S, hence gt′ (generate and transform) actually trans-
forms the outset in S. If E is an evaluator, we say
that g′ = Eg and take that g′ is the set of codomains
of E restricted to the morphisms generable by g.

Definition: Given a set of generators GS over S,
an evaluator E : S =⇒ V is controllable by GS if
G′

S = EGS = {g′i = Egi|gi ∈ GS} forms an omnipo-
tent set of generators over V . @

Cognitive problems expressed with controllable
evaluators allow for complete control over a system
while allowing uncertainty in the definition of the out-
set and goal.

Example: John loves Mary, but he does not know
if she loves him back. John evaluates all possible
states in the universe U in 2 outcomes: Those where
Mary loves John ♥ and those that do not 6 ♥. His
love is so deep that he does not even consider an
universe where either himself or Mary do not exist.
His cognitive problem is (U , 6 ♥ ∪ ♥ = Obj(U),♥).
John decides to take action g =“confess his love in
public” to make her fall in love with him, unaware
that g is not a purposeful generator because Mary
will feel embarrassed if she loved him. John loses the
love of her life.

7



♥ 6 ♥
confess(♥)

confess( 6♥)

This example shows that it is possible to model ab-
stract concepts as cognitive categories with the use of
generators and evaluators, without requiring exten-
sive knowledge of the underlying independent system.
@

3.4.2 Hidden states.

By definition, a generator assigns one morphism (or
state) to each state. However, due to uncertainties,
some operations do not always led to the same re-
sult, even if that operation is repeated from the same
outset. Therefore, the operation does not yield a gen-
erator because it is not a function. The solution is to
consider hidden states (see Figure 5).

Consider an outset O ∈ S and a putative generator
g ∈ GS that such that

g(O) =

{

T1 P (g(O) = T1|O) = p1

T2 P (g(O) = T2|O) = p2 = 1− p1

where p1 and p2 are the probabilities that the out-
come of g(O) are T1 and T2, respectively. g is not a
function so it is not a generator. This is the trick: We
split the outset O into O′

1 and O′
2 in another cognitive

category S ′ such that the new category has the same
states as S plus an additional one that represents the
second outcome from g(O), and construct a proper
generator g′ such that if X 6= O and g(X) = Y , then
g′(X ′) = Y ′, and if X = O, then g′(O′

1) = T ′
1 and

g′(O′
2) = T ′

2. That is, O is equivalent to O1 when
g(O) = T1 and analogously to O2. We now have
grounded the generator in a more accurate cognitive
category and removed the uncertainty posed by g(O).
By application of an evaluator E : H =⇒ S

E(X ′) =

{

O if X ′ = O′
1 or X ′ = O′

2

X Otherwise

we can verify that Eg′ is not a generator in S. O′
1

and O′
2 are hidden states in O.

The bottom line is that an operation over a cog-
nitive category S that yields two different outcomes

T1 O′
1 T ′

1

O

T2 O′
2 T ′

2

g′(O′

1
)

g(O)

g(O) g′(O′

2
)

Figure 5: Outset O presents one hidden state because
g(O) is not a function. O is splitted into O′

1 and O′
2

and g adapted to function g′.

from the same outset is an indication that there is
some deeper structure that we are not aware of, yet
it is still possible to be modeled as a cognitive cate-
gory by designing a more detailed model that takes
the different outcomes as a substate of the outset.
Hidden states are reciprocal to evaluators: Evalua-
tors reduce the number of states in a category whilst
hidden states increments them.

We are now ready to define cognitive problems in
a general form.

Definition: Given a cognitive category S, a cog-
nitive problem B is a triple (S,O,T), with O,T ⊂ S
subsets denoting outset and goal, respectively. @

This definition has the advantage of expressing
a cognitive problem with partial information about
states of S. An equivalent formulation is to define
the outsets and goals implicitly as objects VO, VT ∈ V
in the codomain of an evaluator E : S −→ V . The
solution to B is a generator that sends every object
Oi ∈ O to any object Tj ∈ T. This way, the ac-
tual outset, whose uncertainty is represented by the
set O, is guaranteed to be sent to any state Tj that
complies with the desired goal.

Example: In this example we will model genetic
algorithms with the proposed framework. Genetic
algorithms (see for example [23] or [3]) are itera-
tive processes that are composed of (1) a population
of n chromosomes vi generally represented with bit
vectors, (2) genetic operators that alter the chromo-
somes, and (3) a fitness function f . The adaptation
is as follows: (1) The population of chromosomes
v
n maps to one object in the cognitive category P

of populations, (2) genetic operators map to gener-
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ators over P , and (3) fitness functions map to eval-
uator E : P −→ V , where Obj(V) = {Vopt, Vnot}
representing, respectively, better optimization than
the outset population and not better. However, mu-
tation and crossover operators yield random mor-
phisms in P , which indicate the presence of hidden
states that encode the future outcomes of the muta-
tion operators, i.e. the seed in pseudo-random gen-
erators. To overcome this uncertainty, we pose the
cognitive problem by specifying outset and goal in V :
Bopt = (P , Vnot, Vopt). Now, mutation and crossover
operations have a high probability of being proper
generators in V . Note that we are not construct-
ing proper generators from pseudo-generators, but
rather bypassing the randomness presented in P by
implicitly considering the cognitive category of hid-
den states HP , an evaluator F : H −→ P and the
composition E ◦ F : H −→ V , which allows to send
generators from H to V if the parameters of the ge-
netic algorithm are chosen adequately to converge.

H P VF

E◦F

E

@

3.5 Dynamic systems

We have previously stated that independent systems
keep no relation to other systems whatsoever. This
also applies to time. In order to conserve generality,
we give time no special consideration and incorpo-
rate it into states, which yields the expected indepen-
dency. If SD is a dynamic independent system, let us
describe a state S ∈ SD as a vector of static substates
S = {St0 , St1 , . . .}. Thus, S holds the complete time-
line of SD in a single state. The set of objects in the
cognitive category SD holds all the possible timelines.
We deal with uncertainty in time by considering de-
terministic (causal determinism) and indeterministic
dynamic systems.

3.5.1 Time in deterministic systems.

Consider a dynamic independent system whose state
is defined by S = {St0 , St1 , . . .}. A deterministic in-
dependent system is completely determined by the

state in one instant t0. The remaining instants are
calculated inductively from St+1 = f(St). Hence, we
can rewrite the state of a deterministic system with
just S = S0 and use it for the objects in the cognitive
category.

3.5.2 Time in indeterministic systems.

In this case, the states S ∈ S must include the
temporal evolution of the system in all instants to
completely and uniquely describe each possible time-
line, i.e. two timelines that split at instant t1 are
described by states SA = {St0 , S

A
t1
, . . .} and SA =

{St0 , S
B
t1
, . . .}. If a cognition has access to evaluating

S only at instant t0, then we can construct an aux-
iliary cognitive category V whose objects are all the
possible states of S only at instant t0: V = {Vi = Si

t0
}

and an evaluator E : S −→ V such that E(Si) = Si
t0

.
The result is that we have a cognitive category, i.e.
V , of an indeterministic dynamical system with un-
certainty in future instants, but subject to cognitive
processing with all the formal tools of the previous
sections.

3.6 Agents

The agent-environment paradigm is prevalent in arti-
ficial intelligence. In this paper we drop the assump-
tion that agents and environments should be treated
as separated components with the definition of inde-
pendent systems. This proposal integrates the agent-
environment paradigm as a special case of indepen-
dent systems. To start with, consider an independent
system S consisting of two subsystems Agent SA and
Environment SE . Then all states S ∈ S have the
form S = A × E, where A ∈ SA and B ∈ SB are
substates that describe the agent and the environ-
ment, respectively. A putative cognitive system acts
on S as a whole, rather than controlling agent and/or
environment separately.

Example: A neural network that controls an au-
tomatic car is described by a set of weights w̄ =
{wi,j}. The timeline of the neural network, car and
roadways constitute an independent system S = A×
E where A = w̄×AC ×AM describes the neural net-
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work w̄, the computing system AC that executes the
neural network, and the mechanical components that
drive the car and sense the environment AM , whilst E
describes the roadway. A drives safely along E with
no need for a cognitive system. Even so, we would
like to improve the reliability of the system against
unexpected situations, so we take a deep learning al-
gorithm to train the neural network for better per-
formance. This algorithm executes independently to
driving the car and transforms S by modifying the
values in w̄, therefore the deep learning algorithm
is a generator over the category of neural networks
that drive A, and it solves the cognitive problem
B = (S,O,T), where O = w̄ × AC ×AM × E ⊂ S
is all the possible states that describe the indepen-
dent system with a fixed w̄ and T ⊂ S is the set of
all states where the neural network performs better
than any O ⊂ O. Moreover, consider the evaluator
F : w̄×AC×AM×E −→ w̄, or equally, F : S −→ Vw̄.
Any generator over S will only be an omnipotent gen-
erator over at most Vw̄ because there are no genera-
tors that transform AC , AM or E independently to
w̄. @

4 Discussion

We have succintly introduced the principles of a new
way to understand artificial intelligence. There is a
long path until we can fully understand how category
theory may contribute to cognitive theories. Indeed,
just from applying two of the most basic concepts
in category theory, i.e. categories and functors, we
have shown that turing machines, neural networks
and evolutionary algorithms admit a single formal-
ization under the proposed framework. This frame-
work considers operations as black boxes and con-
structs methods to manage them and operate with
them. The flexibility of categories allows to consider
many different kinds of systems which are not limited
to the target system, but can also represent abstract
systems grounded on the target system that ease the
theoretical study of the operations.

It remains to study how other central concepts in
category theory can contribute to extend this frame-
work further, for example by analyzing the role of

the Yoneda Lemma in deepening our understanding
of canonical sets of generators (section 3.3). More-
over, one of the central cognitive abilities that has
been left out of this article is analogies. It seems
plausible to generalize evaluators and hidden states
to analogies using adjunctions instead of functors,
which would enable to construct a network of ad-
junctions between cognitive categories of represen-
tations. Furthermore, we postulate that cognitive
categories of generators and of evaluators enable a
cognitive system to cognitively process and improve
its own methods, opening the path to formally de-
scribing meta-cognition by fusing the cognitive sys-
tem with the independent system it controls. We
leave these topics for future developments, as well as
more detailed cognitive-categorical models of the ex-
amples presented.

We have challenged some prior assumptions tradi-
tionally rooted in AI. Firstly, we have dropped the
distinction between agent and environment in order
to process them as a whole. The advantage is that
any behaviour that emerges from interactions agent-
environment requires no special treatment. Secondly,
we considered time as an additional state variable by
including the timeline of the system as states. For
this reason, we claim that the study of general AI
demands that we approach it from several perspec-
tives, challenging the assumptions that may hinder
the progress in the field, to unblock the switch from
narrow to general AI.
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